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Adversarial Search

In many problems — especially game playing — you’re are pitted
against an opponent

This means that certain operators are beyond your control

That is, you cannot control your opponent’s moves

Wayne Wobcke
You cannot search the entire space from the outset looking for a
Room J17-433 solution since your opponent may make a move which makes any
wobcke@cse.unsw.edu. au path you find obsolete

Based on slides by Maurice Pagnucco . o o
What you need is a strategy that leads to a winning position regardless

of how your opponent plays
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Adversarial Search Overview
Shall investigate two uses of search where we can apply other
strategies to search the state space Minimax
In particular we shall investigate adversarial search in which we Alpha-Beta Pruning
search through a space where not all operators (choices) are under our . . .
control Constraint Satisfaction as Search

We shall also briefly discuss constraint satisfaction problems Conclusion

Reference:
Ivan Bratko, Prolog Programming for Artificial Intelligence,
Addison-Wesley, 2001. (Chapter 22)
Stuart J. Russell and Peter Norvig, Artificial Intelligence: A
Modern Approach, Second Edition, Pearson Education, 2003.
(Chapter 6)
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Games as Search Problems

Require the following components:
e initial state — board position plus which player has first move
e operators — legal moves
e terminal test — determines if game is completed

e utility function — numeric value for outcome of game
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Example — Tic-Tac-Toe

Max (X)
Min (0)

oo
Max (X)

Min (0)

Terminal
ol lo olxio olxio

Utility +1 0 -1
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Minimax Criterion

Assume game tree of uniform depth (to simplify matters)
e Generate entire game tree
o Apply utility function to each terminal state

e To determine utility of nodes at any level, if Min’s turn to play it will
choose child with minimum utility, otherwise Max will choose child
with maximum utility

e Continue backing up values from leaf to root, one level at a time

Maximizes utility under assumption that opponent will play perfectly to
minimize it (assuming also opponent has same evaluation function)
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Minimax Example

Max 5

Min ( 9 2 2

5 10 7 2 5 8 12 3 2
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Minimax Algorithm

function MinimaxValue(state, game) returns utility value

if TerminalTest[game](state)

then return Utility[game](state)
elseif Max is to move in state

then return highest MinimaxValue of successors(state)
elsereturn lowest MinimaxValue of successors(state)
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Alpha-Beta Pruning

In most games it will be impossible to try and calculate minimax as
described — the game tree will be just too big

There is however a way of pruning the amount of work to be done
and still make the correct minimax decision

Pruning — elimination of branches from the search without
examination

Alpha-beta pruning returns a pruned minimax tree

COMP9414 ©UNSW, 2004 Generated: 31 March 2004

COMP9414, Wednesday 24 March, 2004 Adversarial Search

Alpha-Beta Pruning

Idea: Consider node n in search tree such that certain player has a
choice of moving to that node

If the player has a better choice m either at the parent node of n, or

at any choice point further up, then n will never be reached in actual
play

Once we have ascertained enough information about n by looking at
some of its successors to reach this decision, we can prune it
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Alpha-Beta Pruning
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Alpha-Beta Pruning

Minimax is depth-first

At any point we only have to consider the nodes on a single path in
the search tree

Suppose a is the value of the best choice for Max on the path and 3
the value of the best choice for Min on the path

Alpha-beta updates the values of a and 3 and prunes any subtree as
soon as it can determine whether it is worse than the current o or
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Alpha-Beta Pruning Example

Max
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Alpha-Beta Pruning Algorithm

function MaxValue(state, game, a, (3) returns minimax value of state

if CutoffTest(state) then return Eval(state)
for each sin Successors(state) do
o — Max(a,MinValue(s, game, a,f))
if a > pBthenreturn 3
returna

function MinValue(state, game, a, B) returns minimax value of state

if CutoffTest(state) then return Eval(state)
for each sin Successors(state) do
B «— Min(B,MaxValue(s, game, a,f))
if B<athenreturna
return 3
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Games of Chance

Many problems and many games include an element of chance
For example, the roll of dice (backgammon)

The game tree must now include chance nodes representing the
element of chance and labelled with the likelihood that the given
chance event will occur

We must now work with expected values
expectimax(C) = ¥; P(di)maxscgc, o) (Utility(s))
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Constraint Satisfaction Problems Conclusion
Constraint Satisfaction Problems (CSPs) are problems in which states Search is a common technique in problem solving especially when
are defined by the values taken by a set of variables and the goal test our knowledge of the problem or domain is limited

specifies a set of constraints the values must satisfy It is important to spend some time thinking about the problem in

Problems that can be expressed as CSPs: N-queens, VLSI layout, order to decide how the problem states will be represented and which
scheduling, cryptarithmetic search strategy to apply
Can use search to look for an assignment of values to variables such We have only investigated a small number of search techniques

that the constraints are satisfied We have examined some uninformed (blind) and informed (heuristic)

CSP has become a powerful and commonly used technique in Al strategies plus some techniques for adversarial search and constraint
with its own algorithms for determining variable assignments (e.g. satisfaction problems
arc consistency, hill climbing, simulated annealing, etc.)
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Constraint Satisfaction Problems
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