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1. INTRODUCTION

On close examination of the simple or complex
manipulating and perceiving behavior such as
those performed by biological organisms, the com-

putational methods involved in engineering mani-

pulator control or image processing problems have
serious shortcomings. They fail to produce a truly
sophisticated and adaptive behavior. The degree of
difficulty experienced in obtaining mathematical
solutions even for trivial actions performed by or-

dinary organisms is very high. However, it is al-
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most certain that the biological organisms do not
solve or model the complex mathematical formula-
tion for such complicated behavior. Instead, it
seems that biological organisms use some form of
memory driven control system. Hence, many re-
searchers have investigated the structural and fun-
ctional properties of the brain.

Because of the general drawback to adaptive co-
ntrollers for complicated systems such as visual
image processing for the part inspection or image
understanding and sensor based robot control,
which require the real time recognition of the ext-
racted feature and the real time computation of the
parameter identification based on some performa-
nce criteria with the proper management of sensi-
tivity on sensory inputs, the robust adaptive cont-
roller based on the biological structure and func-
tion has drawn a great attention recently. In the
hope of achieving human-like highly adaptive and
sophisticated manipulating behavior with percep-
tion of image and speech, a lot of researchers have
been involved in functional and structural mode-
ling of information processing of the human brain
W Artificial neural net models have been studied
by scientists in various fields for many years®.
How to achieve a great degree of the robustness,
adaptation, and easy learning is the major focus in
this area which also requires high computation ra-
tes.

Anatomical and neurophysical studies of the ce-
rebellum have led to a theory concerning the func-
tional operations of the cerebellum. Some basic
principles of how the cerebellum accomplishes mo-
tor behavior have been organized into a mathema-
tical model, Cerebellar Model Articulation or Ari-
thmetic Controller(CMAC) by Albus® ®. CMAC is
a schematical approximate modeling of the infor-
mation processing characteristics of the cerebel-
lum. Through a series of storages or learnings,
CMAC works as a computational module genera-

ting weights in a distributed table look-up manner
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connected in parallel.

CMAC has been applied to several control appli-
cations and revealed its usefulness at various le-
vels in control problems™ "', Although CMAC
was applied to various applications as a control su-
bstitute or a reference input generator and visual
image recognizer, a detailed analysis of CMAC ma-
pping and network with a learning capability was
not performed yet. The convergence of CMAC has
been anticipated from the experimental simulation.
From the analysis and comparison of CMAC net
with the linear associator which is one of well
known neural network models, CMAC is renamed
as CMLAN (Cerebellum Model Linear Associator
Net) in this paper.

CMLAN has a simple structured processing na-
ture of generating output in response to any conti-
nuous or discrete state input. It requires, however,
a design guide to specify control parameters and an
efficient learning algorithm as a controller for un-
modeled or modeled systems. To provide a design
guide a through investigation on the convergence
trend of learning and related control parameters
should be done because of their nonlinear effects
on trained results.

This paper presents the extended view and de-
tailed analysis on CMLAN such as mapping struc-
ture, learning process, system memory requireme-
nts, property of‘ interference and continuity(gene-
ralization), and convergence which has not been
proved formally yet'®®, Three types of basic lear-
ning rules such as a batch type accumulated seque-
ntial error learning, on-line type direct sequential
error learning, and a learning based on the unifor-
mly distributed random errors were investigated in
comparison with the conventional maximum error
learning. A uniform quantizing method was applied

to cope with the various ranges of input variables.

2. ANALYSIS ON CMLAN
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This section briefly explains about the structure

and function of the computational CMLAN module,

and presents the extended view and detailed anal-
ysis on CMLAN.

Structure and Function

CMLAN accepts a continuous or discrete state
input vector by converting a precise input into
many discrete fuzzy inputs and produces an output
vector by summing the distributed responses, cal-
led weights. From a functional point of view, lear-
ning can be stated as a sequential storage of the di-
fference between the desired and the CMLAN ge-
nerated approximate discrete system responses in
a distributed manner by forcing those differences
to be near zero. In fact, to generate system output
or relationship of the interior system parameters
CMLAN can be applied to any system which has
input-output relations such as P=H(S), where P
and S are output and input state vectors respecti-
vely and H is a mapping function.

CMLAN maps the continuous or discrete input
states into the structured discrete pattern vectors
determined from the resolution and the number of
quantizing blocks of each input variable and gene-
rates the approximated discrete responses. The
hyperstructure of the combined quantizing block
and the resolution of each input variable affects the
memory size required and reveals two opposite
features, the generalization and the interference.

In the case of non-fixed(real) node input state
vectors, CMLAN can not maintain the unique input
and output relation. CMLAN maps or discretizes,
however, successfully an infinite number of input
states. An iterative learning scheme of CMLAN can
be thought as a powerful substitute of LMS(Least
Mean Square) error procedure.

In a word, main characteristics of the CMLAN is
placed on its structured mapping which decompo-

ses continuous or discrete vauled input state vec-

tors into a set of linear independent binary valued
input pattern vectors. Other processes beyond this
conversion is the same as those of a linear associa-
tor model of the neural net except a slightly diffe-
rent learning scheme. With a little modification by
introducing a non-linear activation function, CM-
LAN can be applied to a case of the continuous va-
lued inputs and the discrete binary output pattern

vectors.

CMLAN is composed of two main mappings in
addressing the corresponding response memories
for a given input.

S—A and A-P.

where S=sensory or command input state

vector

A=association or address vector
P=response vector

The first mapping determines the active address
vector for storing and retrieving trained results
from any given input and the second generates the
corresponding response, which is the arithmetic
sum of the values stored in the active address vec-
tor. S™A is broken down into two sub-mappings
such as S=>M and M—A, where M is an interme-
diate vector. Each input vector S is composed of N
variables which can be continuous or discrete.

A range of each S; is segmented by K;, the pres-
pecified quantizing block for input variable i, resul-
ting in quantizing functions ‘Q; for j=1 to K;, which
represents the number of the quantized blocks at
layer j of input variable i. The quantized block is
one bounded to assure the equivalent quantization.
Since the quantized blocks of each layer are inde-
xed and offset by one unit between the adjacent la-
yers, the number of quantizing layers of variable i
is equivalent to K. The interval of S; is usually con-
verted to one unit. Since the resolution of S; stated
by Albus may lead to the restriction of the input
state vectors, the interval of S; was used instead. In
fact, the resolution of the input state vector is dete-

rmined from the offset of quantized blocks. Input



state variables are usually continuous but someti-
mes discrete with the resolution determined from
the characteristics of the system components or di-
screte sampling time.

A set M; is composed of ‘Qy, Q2+, ‘Qui. Each 'Qy
has INT (SgK) +1 or INT(Sr/K» +2 number of
the quantized blocks, where Sgi is a range of input
variable i. For given S, a set of elements M{" is co-
mposed of the quantized blocks selected from each
'Q, where j=1,--, Ki. For variable i, the total num-
ber of quantized blocks, N can be obtained such
that.

Nt =Sp+Ki

The number of elements in association vector A,
denoted by | A | and concatenated from N input
variables can be obtained by assuming K=K; for

i=1,23-, N such that
k
1A1=2 Q7% ",
=1

where | A | also denotes the required CMLAN
system memory. CMLAN reduces the infinite me-
mory required for the continuous control function
to | Al number of memories by discretizing the
control function while maintaining a certain accu-
racy. A set of concatenated block of M*; for a corre-
sponding layer of every input variable produces the
association vetor, A*(address decoder), which de-
notes a distributed memory address where trained
results are stored or retrieved.

As the result of the structured mapping of S—A,
the data storage at any point alters the values sto-
red at neighboring points. The size and the shape
of a neighborhood obviously depend on a quanti-
zing interval K; and the offset of input variables.
The hypercube generated by the input variable off-
sets should be scaled to equal to the precision re-
quired for each variable. Thus a unit step along any
input variable axis will always be within the desi-
red precision. Although this required precision
should be set by the designer cons:dering the re-

solution of the control system components, the af-
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fordable system memory and desired accuracy of
system response should be considered as mentio-
ned earlier.

Since for most CMLAN control applications, it is
hard to determine the sensitivity of the resolution
of each input variable to a system response be-
cause of the combined effect with K,, input variable
ranges, and the characteristics of the contro! func-
tion, a uniform scheme for the CMLAN quantiza-
tion has been devised as following.

Based on the estimated precision for each input
the range of each input variable is scaled and mo-
dified by extending or contracting its range to
achieve a unit step interval. In CMLAN, every in-
put variable is actually considered to be nondimen-
sional and the only factors to be considered for a
structured mapping are the mapped CMLAN input
ranges, variable offset, and quantizing intervals.
After selecting the maximum range of all input va-
riables, other input variable ranges are set to the
number of unit steps of the selected maximum ra-
nge. This procedure allows various offsets of input
variables and the uniform mapping through the use
of a common quantizing interval such that K=K
This scheme eliminates the restrictions of the ma-
gnitude of a quantizing interval caused by relati-
vely small input range allowing the efficient map-
ping for the data storage and improves the CMLAN
system response because of the offset adaptive to
input variable range. However, it should be noted
that the scaled offset should be above the resolu-
tion of the control system component.

For a given fixed node input, the conventional
maximum error correction (MEC) training propo-
sed by Albus does the following data storage pro-
cess. Initially all sets of association vector are set
to zero. At every discrete input node a difference
between the desired function value and the CM-
LAN generated approximate value is computed.
Comparing it with the predefined tolerance and

choosing an integer node at which a maximum er-
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ror occurs, the CMLAN mapping of the input is pe-
rformed to generate A% which is the active set of
association vector. The error is stored at each ele-

ment of A* in a distributed manner such that.

F(8)w—CMLAN,,

A=GE A | )

where G=training gain,
Sm=input node vector where the maxi-
IMUm error occurs,
F(S,) =desired function value at Sm,
CMLAN,=CMLAN generated function value at
Sm,
| A* | =number of elements in A* which

is equivalent to K.

The value G is less than or equal to one and rep-
resents the learning speed, denoting G=1 is equi-
valent to one step learning. As the value of G is
smaller, the learning gets slower and the resulting
weight difference has lesser effect on the neighbo-
rhoods defined by K.

Although the MEC training has the inherent di-
sadvantages of long cpu time, oscillating behavior,
and the inadequacy of handling continuous or va-
riable discrete input state vectors, it has the grea-
test learning performance per each trial of training.
With the fixed input node space, learning on samp-
led node input generates a linear interpolating ef-
fect on other untrained nodes. We present a non-
oscillating learning algorithm guaranteed to conve-
rge, a fast converging algorithm with a little oscilla-
ting feature, and an algorithm for non-fixed input
nodes to overcome the limitations of the MEC lea-
rming.

CMLAN has an inherent training difficulty for
functions having discontinuities. A function having
a discontinuity should be handled by using the se-
parate CMLANS or by taking trained results apart
in the CMLAN input space. A function for CMLAN
to be trained should be smooth enough to get a

good performance. More careful attention on the
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control parameters should be made for functions
varying sharply because of the inherent correlative
effects of the two opposite properties of CMLAN,
generalization and interference.

A propety of generalization or continuity is sim-
ply explained as similar inputs produce similar re-
sponses because of the overlapping nature of the
CMLAN structured mapping. Learning interfere-
nce occurs when the property of generalization is
not desirable such that quite different responses
are required for similar inputs. Although Albus
stated the learning interference can be overcome
by the repeated iterations of data storages on simi-
lar inputs, this can not be achieved successfully be-
cause of the linear characteristics of learning pro-
cedure because it uses a unity linear activation fu-

nction.

Convergence, Generalization, and Limitation

Consider a coarse coding, which divides the
space into large overlapping uniform sizes of zones
and assigns a unit to each zone. The key fact in a
coarse coding is how accurately an input feature is
encoded. The CMLAN structured mapping is a
kind of coarse coding but has a unique coding cha-
racteristics. As mentioned earlier, the CMLAN ma-
pping scheme decomposes input state vectors into
a set of linear independent binary pattern vectors
whose values of elements are one for the active
elements and zero for the inactive elements.

The number of generated binary pattern vectors
for the input state space is same as the number of
the CMLAN fixed node inputs determined by the
offset of input variables and is regardless of K. K
defines the number of active units and the total
number of binary input elements M, used for map-
ping. Given input space with an offset specified, the
total number of decoded binary elements is dec-
reased as K increases. The feasible number of dif-

ferent input pattern vectors is the number of com-



bination K from M. From these, N number of k-
nearly independent binary pattern vectors are for-
med by the CMLAN mapping. Every binary ele-
ment is connected to its own weight and the value
of an output unit is determined from the linear sum
of each weighed input binary values.

Once binary pattern vectors are formed, the net-
work of the CMLAN resembles exactly a linear as-
sociator with a delta learning rule as shown in fig.
1. Since the mapped input binary pattern vectors
are linearly independent each other, CMLAN sati-
sfies the requirements of the delta rule learning.

the CMLAN weight connection can be expressed

CMLAN
STRUCTURED
MAPPING

X=<111000>
X,=<101100)
X%=100110
X%=¢000110D
INPUT
1 6 \
T )
’ ° L
v )
v (456)
N O )
(1.34)
(1,23
BINARY PATTERN
VECTOR

e

A5 (1)

in a matrix form as a system of linear equations
such that

[Xp: Xpz - Xomd [Wi Wo s WydT=To

where p indicates the various input patterns and
is indexed as 1, 2, ***, N. The weight matrix can be
obtained as W=X* T and X*is a pseudo-inverse.
As far as the system input and output has one to
one corresponding relation, W is unige. If not, W
is a least square solution to the system of minimum

norm. An easy way to compute W specially for a la-

rge system is to use an iterative error correcting
storage procedure called LMS(Least

Square) learning procedure.

Mean

Fig. 1. CMLAN network.
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Since every decomposed binary input pattern
vector is not orthogonal, with a given network and
a given set of associations, it is desired to produce
a set of weights that minimizes some sensible mea-
sure of errors. The error surface is formed from
the error measure as a height in weight space
whose dimension is composed of each weight in a
network. The shape of the error surface is critical
in the speed of learning. For a network with linear
output elements, the error surface forms a bowl
shape. Since the bowl has only one global minmum,
a steepest descent on the error surface is guaran-
teed to find it. If the derivative of the error surface
is proportional to the weight change by the delta
learning rule, this corresponds to performing the
steepest descent on the error surface™.

The convergence of the CMLAN can be proven

similary as a case of multi-layer LMS learning net-

work. CMLAN can be thought as one layer network
being connected whose input and output directly.
Since, with a linear activation function, muti-layer
LMS network can be converted to one layer net-
work, the number of processing layers is not really
matter while an activation function is kept linear™.
If there is a fixed finite set of input-output cases,
the error measure for a specific input-output case
is
E,=1/2(T,—Y,)?

P=index over input-output pairs,

T,=desired output,

Y,=CMLAN generated output.

The overall error is then,
N
E=X E,
P=1

For a specific case,

yi=x; for i=1, 2, M

Since CMLAN has a linear output which is iden-
tical to the total input,

—192 —

Y=X

The partial derivative of E, with respect to each

weight is obtained from the chain rule.

2E, _ oE, dY oX
:;W; QY dX QWi

= "(T‘Y) yi

__8 Yi
From the requirement of steepest descent,

-E,
o W‘ o« QWi

= { 8y: : Delta Rule

After one complete sweep of all pattern presen-

tations,
E X
QWi h pz=1 8p Yoi

This is strictly true for a batch type sequential
error correction(SEC) learning such that the va-
lues of the weights are not changed during the
epoch of whole pattern presentations. All input sta-
tes are presented sequentially and an error for
each pattern is multiplied by learning gain and ac-
cumulated. The accumulated errors are fed back to
each weight at every epoch. It is guaranteed to
move in the direction of the steepest descent. The
learning gain should be small enough for a system
to converge because of the accumulated effects.

For on-line type SEC learning by changing the
weights after each pattern is presented, the pro-
cess is apart to some extent from a true gradient
descent in E. This may sometimes force the oscial-
lating of E to occur but by making learning gain su-
fficiently small, the steepest descent is approxima-
ted arbitrarily closely. With a relatively high gain,
although a little oscillating of E occurs during the
whole sweep, the fast convergence of E per epoch
is obtained. The MEC learning can be thought as
a modified version of the on-line type SEC lear-

ning.
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This type of the simple LMS learning procedure
has its limitation to the casese of similar inputs
with different outputs. Because of the generaliza-
tion property of CMLAN, the interference is rather
occurred when the discontinuity or serious func-
tional change occurs in the output values within the
neighborbood of generalization. Also the steepest
descent will be slow at points in the weight space
where the error surface forms a long ravine with
steep sides and a very low gradient along the ra-
vine. In this case, the gradient at most points in the
space is almost perpendicular to the direction to-
wards the minimum. If the learning gain is large,
there are divergent oscillations across the ravine,
and if it is small, the progress along the ravine is
very slow. This effect is shown in the next section.

The generalization property of the CMLAN is
shown in fig. 2 using a simple trigonometric func-
tion, sin(X). the input range was 0 to 360 degree
and the interval of the sampled input is 5 degree.
CMLAN was trained with 73 sampled input-output
pairs and the trained net was used to obtain the re-
sponse at every one degree over the whole input
space. Resulting errors were compared with linear
interpolated values of the resuits of trained sample
nodes. Since linear interpolated results(dot line)
are almost overlapped to the CMLAN generated
errors, it can not be seen clearly. From this we can
see the CMLAN trained net automatically genera-
tes the linear interpolating behavior. The on-line
SEC learning was executed for 300 epochs. The
convergence of the rms and maximum error over
the sampled and the total input nodes is shown in
fig. 3 with respect to the number of learning epo-
chs.

In practice, same as other neural networks the
most serious problem of CMLAN is the speed of
convergence. How long and how much memory it
might take for a system to learn is the main con-
cern. In the next section, three basic learning al-

goithms are presented and the performance of
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these are compared with the MEC learning. Lear-
ning features which are application dependent are
also defined.

——— CMLAN
——=— interpolation

A i

INPUT STATE (DEGREE)

| A T

RESIDUAL ERROR

400

Fig. 2. Error distribution of the trained CMLAN
net for sin(X) (on-line type SEC learning :
G=0.8, KI=30, Offset=1, Sampled inter-
val=5 deg, Epoch=2300).
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Fig. 3. Convergence trends of rms and max error
over sampled (5deg) and total(1deg) input
nodes with respect to the trained epochs.

Training Algorithms

Training algorithms can be classified into a se-
quential error correction (SEC) and a random er-
ror correction(REC) according to the selection of
the input nodes to be trained. Choosing one of the
two is application dependent. In general, the SEC
learning requires error measures over all sets of
input-output pairs for one learning epoch. Since the
computing overhead required for obtaining errors

over the input space is very heavy when a system
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function to be trained is computationally complex,
the SEC learning is proper to the application whose
errors are measured and kept on-line. This is es-
pecially true for a function evaluated by the nume-
rical iteration and for a large number of input-out-
put pairs.

Previously the convergence of CMLAN was pro-
ven with the batch and on-line type SEC learning.
Here, three basic learning and the MEC learning
algorithms were executed using various learning
gains for P=sin(X) with the ranger of O<¥(360
(deg) and K=30 for the equivalent cpu learning
time. The cpu time elapsed was measured using
VAX 11/750 run-time library routine. It took
around 0.33 seconds per learning epoch for both
batch and on-line type SEC learnings. It took 0.26
seconds per epoch and 0.0055 seconds per each ra-
ndom learning for MEC and REC respectively. Sa-
mpled input patterns were selected at every 5 deg-
ree interval resulting 73 sampled input nodes. The
resulting performance of the rms and maxmum er-
rors are obtained over sampled input nodes and
compared each other.

the batch type SEC learning guarantees the con-
vergence of the accumulated rms error without fo-
rcing any oscillation per epoch once the learning
gain is properly selected. Since training is done
only once per epoch with the accumulated errors,
it converges relatively slow compared to the on-
line type SEC learning.

Trained results of the CMLAN batch type SEC
learning are shown in fig. 4. At G=0.34 the system
diverges and it does not learn. To aviod the diver-
gence, the training performance is checked at the
first epoch searching the best gain which gives the
fastest convergence and then the gain slightly
above the best is chosen. In practice, this process
is good enough to guarantee the system converge-
nce. Initially the high and low end gains exhibit ra-
ther a slow converging behavior because of the in-

terference and generalization properties respecti-

vely.

(2) rms error
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Fig. 4. Batch type SEC learning for P=sin(X) with
K=30 (a . rms error, b | maximum error).
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Fig. 5. Batch type SEC learning for P=sin(X) with
K=40.

However, as far as the system convergence is
preserved, the large gain has the best performance
after all. Trained results with K=40 in fig. 5 show
the diverging and converging effects mentioned in
the previous section clearly. The parallel trend of

slopes for the various gains is maintained until it



reaches its global minimum. It is not plotted but
converged learned rms errors from the unlimited
learning epoch with G=0.5 and G=0.01 were 1.
395131E —6 at the epoch of 19000 and 7.898105E —
6 at the epoch of 55500 respectively.

In a case of on-line type SEC learning the con-
nected weights are changed at each pattern prese-
ntation. Although the performance measure of the
accumulated rms error oscillates at each pair pre-
sentation, it converges fast with little oscillation at
every epoch. The trend of learning results is simi-
lar to that of the batch type SEC learning except
the diverging behavior as shown in Fig. 6.

However, it should be noted that the smaller
gain catches up with larger gain as learning prog-

resses. This is contrary to the result of the batch

() rms error
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Fig. 6. On-line type SEC learning for P=sin(X)
with K=30 (a: rms error, b . maximum
error).
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Fig. 7. On-line type SEC learning for P=sin(X)
with K=40.

type SEC. Fig. 7 shows trends of catching in lear-
ned performance under various gains with a fixed
K of 40 when learning epoch is extended up to
3000. Note. however, practically the learning pe-
riod is also critical to the system performance as
well. For this reason, it is not recommended to re-
duce the gain value very small based on the results

of fig. 7 when applying on-line SEC learning.

The MEC learning proposed by Albus can be
thought as a modified version of the on-line seque-
ntial type LMS learning. Although the correction
effect of an individual pattern presentation is the

greatest of all, it requires almost the same compu-
tational load because of the searching effect for the
maximum error node over all input nodes presen-
ted. The learning progress is quite slow and resul-
ting system performance is poor compared to the
SEC learning because learning is actually done
once per epoch. Furthermore, the MEC learning
can not avoid the oscillating features as the number
of training increases. The trend of learning is
shown in fig. 8. As the learning gain increases, it

learns relatively faster but oscillation starts earlier.

Three learning algorithms mentioned above
have restriction of learning for the fixed node in-
put-output pairs. The REC learning which is one of
quite natural mechanisms is not restricted to the
fixed input nodes but can be applied to the conti-

nuous real input nodes. Since it does not restrict
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the input space nodes, the CMLAN mapping integ-
rates the trained errors in handling very large in-

put space.
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Fig. 8. MEC learning for P=sin(X) with K=30 (a
> rms error, b : max error)

Two types of generating random inputs can be
considered. One is generating a random sequence
input node from the sampled input patterns and
the other is from the total input patterns. The
space which is converted to the binary input pat-
tern space has an infinite number of state vectors.
If the supervised output is obtained directly from
the input state vectors, the learned error is integ-
rated. Since the computing overhead is not signifi-
cant in this case, the initial performance cf learning
is quite good but it can not avoid the oscillating be-
havior similarly as the MEC learning. However,
this learning is appropriate for large input-output
pairs and when the desired function values are not

measured on-line. The advantages of REC learning

might be adopted by the SEC learning.

A random number generator was modified to al-
low a uniform random deviation between 0 and 1
by adding an additional shuffle on the number ge-
nerated by a VAX 11/750 system supplied routine.
This routine is effectively free of the sequential co-
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rrelation®”. Trends of the rms and maximum er-

rors resulted from the REC learning performed on

the sampled input nodes by 5 degree are shown in
fig. 9. It is seen that as the number of training inc-
reases, the effect of the gain gets smaller.

The rms performance of all four algorithms me-
ntioned so far has been compared in fig. 10 for the
equivalent training period. The SEC and REC lear-
nings show the very good converging trend and sy-
stem performance. The REC learns fast at the early
stage but it has a limitation caused by the randomly
distributed inputs without considering the learned

history of the whole input space.
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Fig. 9. REC learning for P=sin(X) with K=30 (a
* rms error, b | maximum error).
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Fig. 10. Performance of various learning algori-
thms on the rms errors over the sampled
input nodes P=sin(X), K=30).

3. CONCLUSTION

The convergence of CMLAN has been proved
identifying it as a kind of one-layer linear associa-
tor having a linear activation function. Trained re-
sults from simulating various functions showed the
coincident converging features. The CMLAN stru-
ctured mapping has its merit of converting the co-
ntinuous or discrete input state vectors into the li-
near independent binary pattern vectors, which is
required for the delta learning rule.

The trained CMLAN network using the sampled
input pattern vectors automatically generates li-
near interpolating results for the untrained input
nodes located among sampled nodes. With proper
number of sampled input node inputs, CMLAN can
learn the desired system behavior arbitrarily clo-
se.

Two Types of learning, REC and SEC, were pre-
sented and their learning performances were com-
pared with the conventional MEC learning. the
MEC learning had the poorest performance of all
because of its learning characteristics. The SEC
learning provided the basic tool to improve or de-
velop the better learning algorithm. The SEC and
MEC learnings have their restrictions such that
they accept the prespecified fixed ncde inputs. The

REC learning, however, can overcome this fact and

S&71% A1)

can also accept the non-fixed real node inputs. A
uniform quantizing method was devised to cope
with various ranges of input variables and corres-

ponding offsets efficiently.

The performance of the proposed learning algo-
rithms was quite good enough to implement the
memory driven control system according to the si-
mulation results performed. The required system
memory for distributed trained data storage was
enormously small compared to normal table look-
up type storage.

The presented results of the CMLAN analysis on
learning will accellerate and extend its engineering

application to the various fields.
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