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A Nonmonotonic Inheritance Reasoner
With Probabilistic Default Rules

Chang-Hwan Lee'

ABSTRACT

Inheritance reasoning has been widely used in the area of common sense reasoning in artificial intelligence. Although
many inheritance reasoners have been proposed in artificial intelligence literature, most previous reasoning systems are
lack of clear semantics, thus sometimes provide anomalous conclusions. In this paper, we describe a set-oriented
inheritance reasoner and propose a method of resolving conflicts with clear semantics of defeasible rules. The semantics
of default rule is provided by statistical analysis of ¥* method, and likelihood of rule is computed based on the evidence
in the past.

Two basic rules, specificity and generality, are defined to resolve conflicts effectively in the process of reasoning. We
show that the mutual tradeoff between specificity and generality can prevent many anomalous results from occurring in
traditional inheritance reasoners. An algorithm is provided, and some typical examples are given to show how the
specificity/generality rules resolve conflicts effectively in inberitance reasoning.

1. Introduction becoming more important because inheritance hierar-
chies are simple, natural, and useful. Most inheri-

Inheritance reasoning appears in various hierarchical tance reasoners have been characterized by algorithms
forms in the literature of artificial intelligence and is which operate on an inheritance network, and some

} of them present translations of the inheritance net-
t A3 g3 PrEgdsty sy . . . .,
=34 1998 108 269, HAhebg s 19989 119 239 work into some nonmonotonic logics, such as Reiter's
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default logic (1], Moor's autoepistemic logic [2], and
circumscriptive theories [3] [4]. Although many
inheritance reasoners have been proposed in artificial
intelligence literature(e.g., [5] [6]), most previous
works are missing clear semantics which is the central
reason why these reasoners sometimes provide ano-
malous conclusions.

In this paper, instead of converting network
structure to certain theories, we describe an inheri-
tance reasoner and propose a method of resolving
conflicts with clear semantics of defeasible rules.
The semantics of default rule is provided by
statistical analysis, and likelihood of rule is compu-
ted based on the evidence in the past. The »*
method is used to decide the existence of defeasible
rules between predicate classes. In order to get
presumably appropriate probabilities for each rule,
probabilities are defined based on the observations of
the occurrences in the past, and the probabilities are
represented as intervals instead of single point
values. These statistically induced degrees of beliefs
have an advantage over the subjective probabilities
since they are based on objective information about
the world, information which could in principle be
obtained through experience/observation.

Two basic rules specificity and generality, are
defined to resolve conflicts effectively in the process
of reasoning. First, like many other inheritance
reasoners, the model uses a specificity rule as a tool
to resolve conflicts. However, specificity is interpre-
ted differently from the viewpoint of set cardinality.
Second, generality rule, a complementary criteria of
specificity, is defined based on the degree of biased-
ness of the observations in predicate classes. As a
complementary rule of specificity, the generality rule
is defined as a measure of the degree of typicality
of instances of each class. The basic idea behind the
generality rule is that the set of instances in the
class must correctly represent the general charac-
teristic of the class they belong to. We studied two
conditions of which the instances in a class must

avoid in order to maintain the minimum degree of
generality: immature class and biased class.

2. Probabilistic Defeasible Assertion

Exception handling has been identified as the
major issue of many inheritance reasoners. For
example, the defeasible inference that Clyde is gray
since he is an elephant and elephants are typically
gray. As has been discussed in the literature, such
defeasible assertions can not be modeled as uni-
versally quantified assertions since there are some
elephants that are not gray. However, even though
these exceptional cases falsify a universal quantifier,
they do not invalidate the entire defeasible asser-
tions. Without a well defined semantics for the
defeasible assertions, it is very difficult, maybe even
impossible, to develop an inheritance reasoner which
will provide justifiable inferences in all cases. It is
clearly impossible for an inheritance reasoner to
generate correct or reasonable answers in all cases.
However, even if we may occasionally be wrong we
would still like to have some global justification for
all of the inferences that the system generates.

The proposed system interprets the defeasible
assertions as being statistical assertions. In order to
determine the degree of belief of assertion, a good
approach is to take advantage of known facts. A
fundamental assumption of this probability is, "The
probability of an indicative conditional of the form if
A is the case then B is is that the probability of if
A then B should be equal to the ratio of the
probability of A and B to the probability of A(ratio
of conjunction of antecedent and consequent to
antecedent).” For example, in assertion "Most of
birds fly”, we interpret this assertion based on
statistical evidence. In other words, among the
instances of birds, how many of them can fly.
Roughly speaking, if there are X objects with
property @, and Y of these have property A then for
any term ¢, P(A(Hle($)) = Y/X, unless we have some
additional information about the term t. For formulas



like “Fly(Clyde),” if 90% of all birds fly and Clyde
is known to be a bird, the inductive assumption
would attach a degree of belief of 0.9 to the formula
"Fly(Clyde)” by assuming that Clyde was a randomly
selected bird.

Statistical semantics was introduced by Bacchus
[7]. He introduced statistical majority probabilities. In
his study, if more than half the objects among L,
satisfy Lz, a rule L1 — Ll is usually L2) is
defined. It is possible that the probabilities of some
rules coincidentally become larger than a constant &
and thus they become defeasible rules. Another
problem occurs when the set cardinality of the
precedent class is very small. When the cardinality
of a class domain is very small, the probability of
getting an anomalous conclusion is very high.
Geffner has studied another probabilistic reasoning,
called e-semantics reasoning [8]. He has considered
probabilistic reasoning.
However, he used probabilities infinitesimally close

versions of inheritance
to 1 and 0. Obviously, there are very rare cases in
which the properties are related via infinitesimal
probabilities.

3. Evidential Probabilities

To make the degree of belief of default assertions
more precise, we adopt an explicit negation system.
Most reasoning systems regard unknown states as
false states for the sake of efficiency. We claim that
false states are different from unknown states.
Various methods for implicit negation have been
proposed such as unique-name assumption, domain
closed world assumption, and predicate
completion [9]. The main issue common in these

closure,

strategies is the efficiency of representing know-
ledge, sacrificing expressive power for the sake of
efficiency. In this paper, we use explicit neguation to
differentiate unknown from false. Notice that, as we
mentioned earlier, the semantics of the system is
totally based on cwurrent evidence. Therefore, if we
do not differentiate false from unknown, we start

s
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with incorrect evidence.

Each rule in the system comes with its corres-
ponding probability, which is generated automati-
cally. In most current reasoning systems, an expert
assigns his/her subjective probability to each rule.
One of the big problems in this approach is the
impreciseness of the value of the probability assigned.
There is also an issue of whether it is reasonable to
describe probability by a single point rather than a
range. While an agent might agree that the
probability of an event lies within a given range,
say between 1/3 and 1/4, he might not be prepared
to say that it is precisely 0.287. In the proposed
system, the probabilities are represented as intervals
instead of point values. Introducing unknown states
allows us to define the likelihood of a proposition A
as a subinterval of the unit interval [0,1]. The lower
bound of this interval is the degree of support of
the proposition, S(A), and the upper bound is its
degree of plausibility, PI(A). The likelihood of an
assertion A is written as [S(A), PI(A)l. The support
of A is meant to describe a lower bound on the
degree of belief of an agent that A is actually the
case. The corresponding upper bound is called
plausibility. Intuitively, we view the interval [S(A),
PKA)] as providing lower and upper bounds on the
“'likelihood'* of A. The detailed method of calcu-
lating these probabilities is explained in the follo-
wing subsection.

3.1 Support and Plausibility

This section introduces the basic framework of
the reasoner. The system consists of three compo-
nents: a set of objects, a set of predicates, and a set
of edges. We have constant symbols which repre-
sent the members of the object, predicate symbols,
and two types of edges. When an object belongs to
a predicate, there is a strong edge from the object
to the predicate. Similarly, if there is a strong or
defeasible rule between two predicates, there is a
strong edge or defeasible edge, respectively, between
the two predicates. Reasoner I' is being represented
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as follows.
r=-<pepPE>

where D shows the domain of universe, P shows
the set of predicates, and E are the edges of the
network. As we mentioned, there are two types of
edges : strong edges and defeasible edges. A strong
edge will have the form x = y, or X # y, where
y is a class. If x is an object, such an assertion
would be interpreted as an ordinary atomic
statement : for instance, they are analogous to y(x)
or Ty(x) in logic. They might represent statements
like “Tweety is a bird” or “Tom isn't a Bird.” If x
is a class, these assertions would be interpreted as
generic statements. For example, X — y and x
y might represent the statements “Birds fly” and
“Penguins don't fly,” respectively. In addition, as we
mentioned earlier, the edges are accompanied by
probabilities such that the general form of an edge
is P — Pz :[S(P; P2), PKP; P»)). Values S(P;
— P2) and PI(P; — P.) represent support pro-
bability and plausibility probability, respectively (In
this paper, we use Pr(P; — P») instead of Pr(P: |
P;). Especially, when S(P; — P2) = Pi(P; — P3) =
1, we say P, = P»).

P+ Q+ Q*

(Fig. 1) Set notations for probability definitions

To differentiate unknown state from false state,
we adopt the following definitions. Each predicate
has three subsets: P', P, and P, P* contains objects
known to have properties of P, P contains objects

known to have properties of TP, and P* contains
objects which are inconclusive about P. Graphical
notations of these sets are shown in (Fig. 1). A
semantic structure for a network is an assignment
of a triple of sets of objects (P, P, P") for each
node in P. The support and plausibility are given as

. — _ _min {Pr(Q/A\P)}
S(P — Q) = min{PHQIP)} = :nax{Pr(P)}

A - _max {PH(@AP)}
PP — Q) = max(Pr(QIP)} =~ = TR 5y

Therefore, the support and plausibility are formally
defined as follows(l|-|} represents the cardinality of a
set).

Definition 1
o) - et
SP =~ @ = E e I+ PN
o) - WPTUPYXQT UM
PUP = Q) = P N 12 NG

4. Detecting the Existence of Defeasible Rules

One of the most prominent features of the
proposed reasoner is the separation of detecting a
rule and calculating the probability of the rule. In
this section, we show how the system detects the
existence of rules and how their corresponding
probabilities are computed. Suppose there are two
predicate A, B. We will see how the existence of
the defeasible rule between A and B is detected and
how the probability of the detected rule is calcu-
lated.

We shall examine the chi-square( ¥*) method of
testing the hypothesis that the two predicates are
dependent on each other. In most reasoners, the
existence of a defeasible rule is decided (1) by an
expert or rational agent, or (2) if the ratio of
consequent and antecedent is greater than a certain
constant, they define it as a defeasible rule. We use
a different approach to define dependency. First we
differentiate the existence of the defeasible rule from
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A 65 (190) | 550 (453.7) | 145 (1163)|| 760
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Total | 250 597 183 1,000

(Fig. 2) «* table for detecting defeasible rule

the probability of the rule. That is, even though the
success probability between two predicates is high,
it is still possible that they do not have a causal
relationship. In the proposed approach, the existence
of defeasible rule is decided by statistical analysis.
A chi-square test is usually used to test the
hypothesis that the observations agree or disagree
with the theoretical frequencies [10]. In our case, it
can be used to test whether the domain sets of two
predicates are inter-dependent or not. The statistic
we will use is
i~ F)?

where f; is the observed frequencies, and Fj; is the

theoretical frequencies. For example, in Figure 2, the
theoretical frequency of A™ () B is given as

250 - % =50. Other theoretical frequencies can be
calculated in a similar way. To determine the
dependency between A and B, the total x* value of
(Fig. 2) is computed as 566.58 and is compared with
the value of x%40.0) , Where 2§, 0 is the 2 value
with degree of freedom being 4 and level of signi-
ficance begin 0.95. As the value of x},¢. is given
as 9.49, we can conclude that A is not independent
of B. The other issue concerning the detecting rule
is how to decide the direction of the detected rules.
We employ the following strategy in the system.

P-Q: P NQ 2P NgQ
Q — P : otherwise

According to Definition 1, the probability interval of
the above rule is given as follows.
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[S(A — B), PXA— B)] =

180 180+5+5+3 1 _
(55 +3253° " a0s5+3 | = [0.76. 0.92]

Sometimes, there are cases that the predicate A is a
subset of the predicate B, which means there exists
a strong rule between A and B. In this case, A" ()
B and A" () B in the above table are empty, and
we can easily figure out that the system produces a
strong rule between A and B.

The semantics for each defeasible or strict rule
are given in the following. Suppose ¢ denotes an
instance and P, Q denote predicates.

1. ¢ = P is true iff P'(c)

2. ¢ # Pis true iff P(c)

3P — Q: [S(P—Q) PUP—Q), iff xPQ) >
Paos and P Q 2PN Q

4. P 4 Q : [S(P£Q), PUPAQ), iff x(PQ) >
Haom and P Q 2P NQ

5P =>Qistrueiff P > Qand P & Q

6.P # Qistrue iff P + Qand P (1 Q =0

5. Inferences

Inferences are performed based on the hierarchical
structure generated from the data. Inheritance reaso-
ning in this case can be regarded as a classification
problem given an available data set. Our claim in
this system is that the most fundamental tools in
classification reasoning are specificity and generality.
Specificity has already been proposed in many
inheritance reasoning systems while generality is a
new inference tool introduced in this paper.

5.1 Specificity

Many inheritance reasoners use specificity as a
tool for selecting natural preference criterion. This
preference criterion is based on simple intuition: the
more knowledge that is used to generate the degree
of belief, the better is the degree of belief. Sentence
a represents more knowledge than g if ¢ = £ is
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deducible from the knowledge base. For instance, the
fact that “Royal_Elephant(Clyde) => Elephant(Clyde)”
indicates that the knowledge Royal_Elephant(Clyde)
should be preferred when including a degree of
belief in Gray_Thing(Clyde). The idea of specificity
was first given by Touretzky in the form of
inferential distance [11]. Since then, many variations
of specificity have appeared in the literature. The
basic idea behind specificity-based algorithms inclu-
ding shortest distance is that the more specific the
information is, the more precise the result is.

The system also adopts specificity as one of the
tools for resolving conflicts. While the definition of
specificity in other inheritance reasoners is based on
network path or standard nonmonotonic logic, we
are interpreting the specificity in terms of set
relationships among classes. Suppose we have two
conflicting reference classes, say A and B, and class
A is a subset of class B(A is more specific than B),
we choose A as the reference class. This is basi-
cally the same as the way in which the conventio~-
nal inheritance reasoners solve conflicts. Now, the
question is what if A has nothing to do with B ? In
this case, B is irrelevant to class A and we have
conflicts. In the system, it creates a derived class
which is the conjunction of A and B, and that
derived class becomes the target reference class,
which is obviously more specific than either A or B.
By doing this, to get the most specific reference
class, the system does specification using set
conjunction as many times as it can.

However, specificity alone can not solve all
conflict problems. Let us pay a second visit to the
above example. Assume that the class Elephant has
only 3 instances, and all these instances are known
to be not gray. It is not safe to say that Elephants
are usually not gray. Where does this problem come
from ? The reason is that the size of the class
Elephant is so small that it can not represent
correctly the characteristic of the class in the real
world. The smaller the number of instances for a
class is, the less likely the instances can represent

the property of the real class correctly. Thus, if the
reference class, whether original or derived, does not
have enough instances, it becomes an immature
class, and thus be prohibited to be a reference class
because it does not have enough statistical infor-
mation. The following section investigates this
problem in more detail,

5.2 Generality

Generality is a complementary criteria of speci-
ficity. The basic idea behind the generality concept
is that the more information we have, the more
correct estimates we can have. Speaking in terms of
class, when we have more sample instances, we
have higher quality guesses. The instances of the
class must have the generality which can represent
the general characteristic of the class they belong
to. We propose two conditions which the samples in
a class must satisfy to maintain the minimal degree
of generality of a class. In case a class has a very
small number of samples, it is quite possible that
these samples do not correctly represent the general
characteristic of the class, thus lacking generality.
Even though the cardinality is large enough to avoid
the immature class problem, we have biased class
problem if the sample is not evenly collected from
its subpredicates. These requirements are discussed
in more detail in the following.

For example, suppose we have a rule “Koreans
are tall,” “Seoul residents are not tall,” and “Kim is
a Seoul resident.” If the instances of Seoul about
property tall are very few, we can not conclude that
Jim is not tall based on the Seoul class. When the
cardinality of Seoul class is very small, it is quite
possible that this small sample does not represent
correctly the characteristic of Seoul residents. Then,
how large should the class size be ? We need a
quantitative study for deciding the cardinality of
classes.

We should consider two kinds of predicates, leaf
nodes and intermediate nodes, since each of these
has different characteristics of minimum cardinality.



First, for leaf predicates, each class, say A, is
divided into three subgroups(A’, A, and A"
Among them, we can consider a set A" A as a
sample of class A. Considering the predicate A as a
variable, we can easily see that the distribution of A
follows a binary distribution. Statistically speaking,
the problem can be regarded as selecting an
appropriate sample size in estimating the proportion
of A. In this type of predicate, we have dichotomous
values, 'yes’ or ‘no’, and thus we only need to
estimate the proportion of the first value.

We will consider the following situation such that
restricting to an acceptable level the probability that
the difference between population mean P of
predicate A and sample mean p of A is greater than
a specified value. Let n denote the sample size of

the population. Note that p 1is defined as
+

I_lﬁliAleﬁll'—ll' and n is denoted as (IATUA

where ||: |l means cardinality function. N is the

cardinality of domain of the universe, which is
denoted as |IDII.

If the permissible error in the estimate of the
population value of the mean is d and the degree of
assurance desired is 1—e, then the following ine-
quality holds.

Pr{P—t>d) < a

According to the central limit theorem [12], p
follows the normal distribution, ie, p ~ MP,(1-5
()/n). Using t-distribution analysis, the above
equation is rearranged to conclude

"> N[1+N(*t%)2]“

In particular, when we have a very large number of
objects in our domain, the approximate- size of a

sample can be decided as follows.
EX1-p)
n > d2

Here we say that n is the minimum cardinality of A
to avoid the immature class. If the class cardinality
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is less than the above number, the corresponding
class is considered to be an immature class. One
drawback of this approach is that when the size of
the original population is not large enough, it needs
a correct value of the size of the population, which
we have to estimate.

Secondly, we will investigate the intermediate
predicates. Intermediate predicates are defined to
have a set of subpredicates. If there is a strong
edge from predicate P to predicate Q, we define the
predicate P as the subpredicate of Q. For an
intermediate predicate Q and a set of subpredicates
of Q, say Pi, Pz ... Py these subpredicates partition
the domain of universe into k disjoint subsets. In
this case, predicate Q is called the parent predicate.
If we consider each of these subpredicates as a
category value of discrete variable, the distribution
of predicate Q follows a multinomial distribution. For
a parent predicate, computing the minimal cardinality
involves a multinomial distribution, which means
that we need to consider the statistical distributions
of all subpredicates simultaneously. To estimate the
minimal cardinality of the intermediate predicate, we
need a correct value of the size of each sub-
predicate. Suppose |IP;*]l and (I[Pl represent the
cardinality of P/ and Pj, respectively, in the real
population. (1Q;*]l and 11Q; 7|l are defined in a simi-
lar way. Let w; and W, be defined, respectively, as
w;=IPFINQII and W,=IIP;*lI/IQ;"Il. The pro-
portion of each subgroup w; can be represented simul-
taneously, for a predicate @ and jth value assign-
ment in @ The question is how to derive the
smallest cardinality n for a random sample from a
multinomial population so that the probability would
be at least 1—a and that all of the estimated
proportions would simultaneously be within specified
distances of the true population proportions. This
constraint can be expressed by the following equa-

tion.

Pr(’QIVK— wlrd)za
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For an individual parameter P, the probability that
the sample value in the table lies outside the
specified interval is

a=Pr(Zj2d¥ n/V wl—w))=2(1-®z))

where Z; is a standard normal random variable, @
is the cumulative standard normal distribution, and

Z2;= d,‘/;/V w,(l - w,) .

6. Algorithm

We will now define the reasoning algorithm and
discuss the basic ideas which motivated this parti-
cular method. Before we describe the algorithm, a
set of rules are specified in the following. The
probability for a strict rule is omitted for the sake
of simplicity. By definition, strict rules(=) contain
the probability of [1,1]. If we use only [AXO0}-
[AX5), we can do monotonic deductive inference
because rules [AXO0]-[AX5] are sound. However,
monotonic  deductive inference alone cannot do a
large amount of useful nonmonotonic reasoning. The
seven reasoning axioms proposed in this paper are
described in (Fig. 3).

The algorithm takes network information and a
focus node s as input, and generates conclusions with

probability for all of the destination nodes reachable
from the focus node. As we have mentioned, imma-
ture or biased class is apt to generate anomalous
results. Therefore, these classes are deleted in advance
from the network. The algorithm then proceeds by
first finding a set of nodes(N,) which the focus
node belongs to, and delete nodes, within N, which
s doesn’t belong to. Now for each node P in N,
calculate all possible paths reachable from P using
[AX0]-{AX6]. The approach we present in the
algorithm has the characteristic of credulous exten-
sion. Credulous extension of an inheritance hierarchy
I with respect to a node s is a maximal unam-
biguous a-connected subhierarchy of I’ with respect
to a. When there is a path s =E or s= - =E,
then this path substitutes all paths from s to E. If
there are two positive(negative) paths which share
the same intermediate and end node, delete the
redundant paths{resp. negative). Given two paths
s=A T Al ATE

and
s=8t Bt . BTE

*

repeat the procedure described in (Fig. 3) until there
is only one path left for each destination node

AXO) If {c=> P, P=P,), c=> P,
[AXI]If{C=P1, P1=/>P2}. c$ P,
[AX21 f {P,=> P,, P,= P3}, P,= P,
[AX3] If (P, = P,, P, ¢ P3}, P, = P,

1. P—P;[S(P,—Py), PKP—P3)],

2. PPy [S(P,+P3), PKP+Py)],

[AX4] If{P[“' PZ:[G,B], P2:>P3), P] _"P:j:[a,ﬂ]
[AX5] If (P, — Pyle, Al P, % P;), P, + Pyla, Bl
[AXG]H(PI:PL Pg—’Pg}, {Pl—’Pz. Pz_’Px}, {P1=7P2. P2+P3} OI'{Pl_’P?.- P2+P3}v

if (P, P> 2o and PINP2P{NP;

if (P, Ps)>xlsos and PTNPSCPINP
3. otherwise, there is no edge between P, and P,

(Fig. 3) Reasoning axioms



(t . Tepresents {= or —}). Now only one path is

assigned to each destination node in the network.
Furthermore, we have temporary node sets, which
are formulas closed under union and conjunction. To
calculate the probabilities of each path which are
defined based on these temporary nodes, probability
definitions in Definition 1 must be extended. For
predicates A and B, the following set operations can
be easily understood to accommodate the extended
formula.

7. Examples

This section shows a couple of examples which
show how the specificity or generality works in
these cases. Nixon's diamond, shown in (Fig. 4),
has been largely used to show the ambiguity of
inheritance reasoning. Nixon is a Republican and at
the same time a Quaker. Since Y(R,P) = 1161 is
greater than 2%, 045 = 949 and R*NP* < R*NP,
there is a rule "R(Republican) is usually not P
(Pacifist)” based on the semantics of rules. Similarly,
a rule “Q(Quaker) is usually P(Pacifist)” exists since
QP = 923 is greater than 949 and Q*NP*
< @"NP". Therefore, Republicans are usually not
-Pacifist while Quakers are Pacifists. In this case,
skeptical reasoning does not generate any conclusion
because conflict occurs at Pacifist, while credulous
reasoning provides two extensions: Nixon => Quaker
— Pacifist and Nixon = Republican - Pacifist,
and does not give any preference among these
extensions. In the proposed approach, the diagram
will be transformed into one of the following paths.

1. Nixon — (Quaker M Republican) - Pacifist, if

o x%Quaker N Republican, Pacifist) > 2%, 0.0

+ (Quaker’ (N Republican’ (1 Pacifist) =
(Quaker’ N Republican” N Pacifist )

2. Nixon — (Quaker M Republican) —+ Pacifist, if

+ 2%(Quaker M Republican, Pacifist) > %4 .95

+ (Quaker M Republican® N Pacifist’) <

(Quaker’ N Republican’ N Pacifist’)
3. There is no edge between Nixon and Pacifist, if
#(Quaker M Republican, Pacifist) < 2%¢.9

Pacifist pacifist(442,366,192) Pacifist

+ .- * + ~ *
= ‘
§+ 130 300 60
S.1]34 40 130
8 8 6 2
g *
Republican(510474, 16) Quaker(m,(ﬁ),fﬂ))

Nixon
(Fig. 4) Nixon's diamond

We present another version of the Nixon example
in (Fig. 5) to show the problem of immature class.
As we have seen in (Fig. 4), "R(Republican) is
usually not P(Pacifist).” Similarly, "Q(Quaker) is
usually P(Pacifist)” because 2%(Q,P)>9.49 and
QNP < @'NP ™. However, the set for Quaker is
(3, 6, 991), which means only nine elements are in
the class Quaker as samples. In this case, because it
does not satisfy the minimum cardinality require-
ment, we just disregard the class Quaker because it
is an immature class. Therefore, the system conclu-
des that Nixon is not Pacifist.

Pacnﬁst pacifist(442,366,192)  Pacifist

+ - %
'§+ 100 300 60 2 1 0
g 1134 40 130 B 2 2 2
E *| 8 6 2 * 438 363 190

Republican(510, 474 16) Quaker(3,6 991)

Nxxon
(Fig. 5) Nixon's diamond with immature class

8. Conclusion

In this paper, we proposed a set-oriented statisti-
cal model for inheritance reasoner. The x* method
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using contingency table is used to decide the
existence of rules. Due to the introduction of
unknown state, likelihood of each rule is given as
an interval. Among the features of the general
inheritance reasoner, we focused on the way of
resolving conflicts. Two basic inference tools were
introduced and explained to resolve conflicts in
inheritance reasoning. Specificity, one of the most
common inference tools, is interpreted differently
from the viewpoint of set cardinality. As a com-
plementary rule of specificity, the generality rule is
defined as a measure of the degree of generality of
the instances of each class. Generality plays the role
of complementing the drawback of the specificity.
The tradeoff between specificity and generality can
prevent anomalous results caused by small cardi-
nality and uneven distribution of instances.

References

[1] D. W. Etherington, Reasoning with Incomplete
Information, Morgan Kaufmann, Los Altos, CA,
1988,

[2] H. Przymusinska and M. Gelfond, Inheritance
Hierarchies and Autoepistemic Logic, Technical
Report, Computer Science Department, Univer-
sity of Texas at El Paso, TX, 1988.

(31 B. A. Haugh, Tractable Theories of Multiple
Defeasible Inheritance in Ordinary Nonmonotonic
Logics, Proceedings AAAI-88, St. Paul, MN, 1988

[4] T. Krishnaprasad, M. Kifer and D. S. Warren,
On the Declarative Semantics of Inheritance
Networks, in Proceedings IJCAI-89, Detroit, ML
1093-1103.

[5] F. Bacchus, Representing and Reasoning about
Probabilistic Knowledge, MIT Press, 1990.

[6] L. A. Stein, Resolving Ambiguity in Nonmono-
tonic Inheritance Hierarchy, Artificial Intelli-
gence, Vol.55, pp.259-310, 1992.

[71 F. Bacchus. A Modest, but semantically Well-
Defined, Inheritance Reasoner, Proceedings o
11th 1JCAJ, 1989.

[8] H Geffner, Default Reasoning : Causal and
Conditional Theories, MIT Press, 1992.

(9] E. Davis, Representation o Commonsense Know-
ledge, Morgan Kaufman Publisher. 1990.

[10] H. Reichenbach, Theory of Probability, University
of California Press, Berkeley and Los Angeles,
CA, 1949,

(111 D. S. Touretzky, J. F. Horty, and R. H. Tho-
mason, A clash of Intuitions : The current state
of Nonmonotonic multiple inheritance systems, in
Proceedings IJCAI-87, pp476-482, 1987.

[12] V. Bamett, Sample Survey Principles and Met-
hods, New York : Oxford University Press, 1991.

o # &
e-mail : chlee@cakra.dongguk.ackr

1982 M-St ANEA 8

Z4(%4h
1988 d AM-gdidtw  AMEA g3
3 2401 8HAA)
19944 University of Connecticut
ZA(TgutAY

199441 ~1995d AT&T Bell Laboratories 74

1996~ A4 FxUjgn ARFAGH 25

#AA Rk : 7IA%E, ATFAF, 9F4Y



