Hidden Markov Model
Hidden Markov model (HMM) Àº ¸ðµ¨¸µÇÏ´Â ½Ã½ºÅÛÀÌ ¹ÌÁöÀÇ ¸ð¼ö (parameter) ¸¦ °¡Áø Markov process ÀÏ °ÍÀ̶ó°í °¡Á¤ÇÏ¿©, ±× °¡Á¤¿¡ ±âÃÊÇØ¼ °üÃøµÈ ¸ð¼ö·ÎºÎÅÍ ¼û°ÜÁø ¸ð¼ö¸¦ °áÁ¤ÇÏ·ÁÇÏ´Â ÇϳªÀÇ Åë°è¸ðµ¨ÀÌ´Ù. ÃßÃâµÈ ¸ðµ¨ÀÇ ¸ð¼öµéÀº ´õ ³ªÀº ºÐ¼®À» ¼öÇàÇϱâÀ§ÇØ »ç¿ëµÉ ¼ö ÀÖ´Ù. ¿¹¸¦µé¸é ÆÐÅÏÀÎ½Ä (Pattern Recognition) ÀÀ¿ë°ú °°Àº °ÍÀÌ´Ù. .... regular Markov model Àº ±× »óŸ¦ Á÷Á¢ °üÂûÀÚ°¡ º¼ ¼ö Àֱ⠶§¹®¿¡ ±× »óÅÂÀüÀÌ È®·ü (state transition probabilities) Àº À¯ÀÏÇÑ ¸ð¼öµéÀÌ´Ù. ±×·¯³ª hidden Markov model Àº Ãâ·Âµé (outputs) ÀÌ ´õÇØÁø´Ù : °¢°¢ÀÇ »óÅ´ °¡´ÉÇÑ Ãâ·ÂÅäÅ«µé (output tokens) ¿¡ ´ëÇØ È®·üºÐÆ÷ (probability distribution) ¸¦ °¡Áø´Ù. µû¶ó¼ HMM ¿¡ ÀÇÇØ »ý¼ºµÈ ÅäÅ«µéÀÇ ¼ø¼¸¦ º½À¸·Î½á »óŵéÀÇ ¼ø¼¸¦ Á÷Á¢ÀûÀ¸·Î ¾Ë ¼ö ÀÖ´Â °ÍÀº ¾Æ´Ï´Ù. Áï Ãâ·ÂÄ¡¸¸ °üÃøµÇ°í »óÅÂÀÇ È帧Àº °üÃøµÇÁö ¸øÇÑ °æ¿ì¿¡ »ç¿ëÇϹǷΠÀº´Ð ¸¶¸£ÄÚÇÁ ¸ðÇüÀ̶ó ºÎ¸¥´Ù..... HMM Àº À½¼ºÀÎ½Ä (Speech Recognition) ±¤Çй®ÀÚÀÎ½Ä (Optical Character Recognition) ÀÚ¿¬¾îó¸® (Natural Language Processing) »ý¹°Á¤º¸ÇÐ (Bioinformatics) µî¿¡ ÀÌ¿ëµÈ´Ù ........ (Wikipedia : Hidden Markov model).
.... 1980³â´ëÀÇ À½¼º ÀνÄÀÇ È帧Àº ÅÛÇø´(template) ¹æ½ÄÀÇ Á¢±Ù ¹æ½Ä¿¡¼ Àº´Ð ¸¶ÄÚÇÁ ¸ðµ¨ (hidden Markov model, HMM) °ú °°Àº Åë°èÀû ¹æ¹ýÀ¸·Î ±â¼úÀÇ º¯È¸¦ °¡Á®¿Ô´Ù. HMM ÀÇ ÀÌ·ÐÀÌ IBM À̳ª IDA (Institute for Defense Analysis), Dragon ½Ã½ºÅÛ°ú °°Àº ¸î¸î ¿¬±¸¼Ò¿¡´Â Àß ¾Ë·ÁÁö°í, ÀÌÇØµÇ¾úÀ¸³ª 80³â´ë Á߹ݱîÁö´Â HMM ÀÇ ¹æ¹ýÀ̳ª À̷п¡ ´ëÇÑ ³í¹®ÀÌ ¹ßÇ¥µÇÁö ¾Ê¾Æ ³Î¸® »ç¿ëµÇÁö ¾Ê¾Ò´Ù. ±×·¯³ª, ¿äÁòÀº °ÅÀÇ ¸ðµç À½¼º ÀÎ½Ä ½Ã½ºÅÛ¿¡¼ HMM À» äÅÃÇϰí ÀÖ´Ù.
°ú°Å 15³â µ¿¾È À½¼º ÀÎ½Ä (Speech Recognition) ¿¡ °¡Àå ¸¹ÀÌ »ç¿ëµÇ´Â ¾Ë°í¸®ÁòÀº Àº´Ð ¸¶ÄÚÇÁ ¸ðµ¨ (hidden Markov model) À̾ú´Ù. HMM Àº ÀÌÁß Åë°èÀû ¸ðµ¨·Î¼, ±âº»ÀÌ µÇ´Â À½¼Ò¿ÀÇ »ý¼º°ú ÇÁ·¹ÀÓ ´ÜÀ§ÀÇ Ç¥¸éÀû À½ÇâÇÐÀûÀΠǥÇöÀ» Markov °úÁ¤°ú °°ÀÌ È®·ü·Î¼ ³ªÅ¸³½´Ù. ÇÁ·¹ÀÓ ´ÜÀ§ÀÇ Á¡¼ö¸¦ ¿¹ÃøÇϴµ¥ ½Å°æ ȸ·Î¸Á (Neural network) ÀÌ »ç¿ëµÇ±âµµ Çϸç, HMM ½Ã½ºÅÛ°ú °áÇյǾî È¥ÇÕ ¸ðµ¨·Î¼ »ç¿ëµÇ±âµµ ÇÑ´Ù.
ÇÁ·¹ÀÓ ´ÜÀ§ÀÇ HMM ½Ã½ºÅÛÀÇ Áß¿äÇÑ Æ¯Â¡Àº À½¼º ºÎºÐÀÌ ¸í½ÃÀûÀ¸·Î ÆÄ¾ÇµÇ´Â °ÍÀÌ ¾Æ´Ï¶ó, °Ë»ö °úÁ¤ Áß¿¡ ÆÄ¾ÇµÈ´Ù´Â Á¡ÀÌ´Ù. ¶ÇÇÑ ¸ÕÀú À½¼º ºÎºÐÀ» ÆÄ¾ÇÇÏ¿© ºÐ·ùÇÏ°í ´Ü¾î¸¦ ÀνÄÇϱâ À§ÇÏ¿© ºÎºÐ °Å¸®°ªÀ» ÀÌ¿ëÇÏ´Â ´Ù¸¥ Á¢±Ù ¹æ¹ýµµ ÀÖ´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ¹ýÀº ¿©·¯ °¡Áö ÀÛ¾÷ ºÐ¾ß¿¡¼ °æÀïÀûÀÎ ÀÎ½Ä ¼º´ÉÀ» ³ªÅ¸³»±âµµ ÇÑ´Ù.
term :
Àº´Ð ¸¶¸£ÄÚÇÁ ¸ðµ¨ (Hidden Markov Model) Andrei Markop Åë°è (Statistics) ±â°èÇнÀ (Machine Learning) À½¼ºÀÎ½Ä (Speech Recognition) º£ÀÌÁî Ãß·Ð (Bayesian Inference) À½¼º ÀÎ½Ä (Speech Recognition) ÆÐÅÏÀÎ½Ä (Pattern Recognition) ÀÚ¿¬¾îó¸® (Natural Language Processing) »ý¹°Á¤º¸ÇÐ (Bioinformatics) ±¤Çй®ÀÚÀÎ½Ä (Optical Character Recognition) Viterbi algorithm Parameter estimation
site :
Hidden Markov Models Tutorial : School of Computing, University of Leeds.
HMM ÀÇ °³¿ä : °æºÏ´ë : À½¼º½Åȣó¸® ¿¬±¸½Ç : Theory & Program Library
Markov Model : ¼¿ï´ë Àü»ê¾ð¾îÇÐ ¿¬±¸½Ç : Markov Model (MM)°ú Hidden Markove Model (HMM)Àº ÇöÀç À½¼ºÀÎ½Ä ½Ã½ºÅÛ ¹× ǰ»çÅÂ±ë µî, ÀÚ¿¬¾ð¾î󸮿¡ ÀÖ¾î ³Î¸® »ç¿ëµÇ´Â Åë°èÀûÀÎ ¹æ¹ýÀÌ´Ù. MM°ú HMMÀº ¿ø·¡ Andrei A. Markov¿¡ ÀÇÇØ °³¹ßµÇ¾úÀ¸¸ç, ¿ø·¡´Â ¾ð¾îÇÐÀû ¸ñÀû¿¡¼ ½ÃÀ۵ǾúÀ¸³ª ÀÌÁ¦´Â ±âº»ÀûÀÎ Åë°è¹æ¹ýÀ¸·Î ÀÚ¸®Àâ¾Ò´Ù ....
Bell Labs: Statistical Models for Speech Recognition
Hidden Markov Model (HMM) Toolbox for Matlab
paper :
À½¼ºÀνÄÀ» À§ÇÑ Àº´Ð¸¶ÄÚÇÁ ¸ðÇü ¿¬±¸ : Á¤»óÈ, ¼Õ°ÇÅÂ, ¹Ú¹Î¿í, Çѱ¹Åë°èÇÐȸ 5±Ç 1È£, 1998 (¡Ú¡Ú¡Ú)
ºÐÀýƯ¡ HMM ÀÇ Æ¯¼º¿¡ °üÇÑ ¿¬±¸ (A Study on the Characteristics of Segmental-Feature HMM) : Á¤È£¿µ, À±¿µ¼±, ´ëÇÑÀ½¼ºÇÐȸ, 2002
¿¬¼ÓºÐÆ÷ HMM À» ÀÌ¿ëÇÑ À½¼ºÀÎ½Ä ½Ã½ºÅÛ¿¡ °üÇÑ ¿¬±¸ (A Study on Speech Recognition System Using Continuous HMM) : À̱Ø, ±è»ó´ö, Çѱ¹¸ÖƼ¹Ìµð¾îÇÐȸ, 1998
À½¼ºÀνÄÀ» À§ÇÑ »õ·Î¿î È¥¼º recurrent TDNN-HMM ±¸Á¶¿¡ °üÇÑ ¿¬±¸ (A study on the new hybrid recurrent TDNN - HMM architecture for speech recognition) : ÀåÃá¼, Çѱ¹Á¤º¸Ã³¸®ÇÐȸ, 2001
Rabiner, Lawrence, 1989. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition.
Kristie Seymore, Andrew McCallum, and Roni Rosenfeld. Learning Hidden Markov Model Structure for Information Extraction. AAAI 99 Workshop on Machine Learning for Information Extraction, 1999.